Use of the Woodpecker Pneumatic Broach with the CLP

Todd V. Swanson, MD
Desert Orthopaedic Center
Las Vegas, Nevada

Cementless Stem Designs

- Cylindrical (AML, Echelon)
- Anatomic (PCA, Image)
- Tapered
Tapered Stem Designs

- Canal filling (Mallory-Head, Synergy)
- Flat, Oval (Taperloc, Accolade)
- Flat, Rectangular (Zweymüller, CLP)

Primary Rotational Stability

Good fit without fill gets stability from macro-interlock and interfacial friction between prosthesis & cortical bone
Corner-Cortical Interlock

- Tapered AP and ML
- Rectangular
- Non-canal filling
- Grit-blast finish only
- Lateral metaphyseal flare to increase primary torsional stability

Zweymüller Philosophy
Other Similar Designs Followed

- CLP
- Platform
- Others

CLP vs Cylindrical
Primary Stability
Fit and Fill

Advantages of Flat, Rectangular, Tapered Stem

The Journal of Arthroplasty Vol. 20 No. 4 Suppl. 2 2005

The Tapered Press Fit Total Hip Arthroplasty
A European Alternative

Todd V. Swanson, MD
My Experience

- 1000 Consecutive Primary THA’s
 - 905 Zweymüller stems
 - 93% osteoarthritics
 - Dorr bone types
 - A: 442
 - B: 474
 - C: 84
 - Mean age – 63.3 yrs (23-93)
 - Most inserted with pneumatic broach (Woodpecker) preparation

“Woodpecker” Pneumatic Broach

- Manufactured by IMT (Switzerland)
- Distributed by Minnestota Bramstedt Surgical Inc., St. Paul, MN
- Adapters available to most broaches
Theory of Operation

- 10mm linear excursion
- Frequency 70Hz (70 strokes/min)
- Forward stroke cuts, backward stroke clears bone chips
- Axial force <1.0 Newton/stroke (0.22 pounds)

Advantages

- Ease of use (no swinging mallet)
- Multiple short, quick strokes rather than large heavy strokes reduce risk of fracture
- Facilitates accurate broaching to minimize gaps between prosthesis and bone
Settings

- Operates at 87-120 PSI
- Low impact setting useful for osteoporotic bone

Technique

- Begin with small broach
- Increase broach size incrementally until resistance encountered
- Broach in straight line
- Exert only moderate pressure (let Woodpecker do the work)
- With CLP, can seat implant 5-10mm lower after initial resistance if necessary to avoid leg length inequality
Provides Precise Cancellous Bone Compaction
Cancellous Bone Compaction

- Delays stress shielding
- Increases primary stability
- Maintains endosteal blood supply

Preservation of blood supply

Live bone heals (osseo-integrates) better than dead bone
Simplicity of removal

- Non-canal-filling stem allows for introduction of thin osteotomes
- Occasional extended trochanteric osteotomy needed due to excellent secondary fixation
 - Easily performed
 - Easily repaired

Minimize Gaps
Reduction of Hoop Stresses

- **Bolland, JBJS-B, 2007**
 - In vitro study of bone impaction using Woodpecker device compared to hand broaching
 - Hoop strains significantly reduced using Woodpecker device (13.2% vs 4.2%)
 - Bone impaction equal or better with Woodpecker device

Revision THA

- **(Hourlier, Polyclinique de la Thierache, Wignehies, France-unpublished data)**
 - 62 revision THA’s using long, Zweymuller stem
 - Mean f/u 4.8 years
 - All femora prepared using Woodpecker
 - No fractures
 - Mean subsidence 1mm
My 1,000 Cases

- 43% Type A bone
- 48% Type B bone
- 9% Type C bone

8.6% Type C Bone
Fracture Rate

- 4 femoral shaft fractures/1000 cases (0.4%)
 - 2 hand broaching
 - 2 pneumatic broaching
- All in extremely osteoporotic bone

Leg Lengths

- Within 7mm in 912 hips (91.2%)
 - Error likely related to method of leg length determination
- Stem subsidence <2mm in all
Intra-op Adjustability

- Sharp, cutting broaches allow intra-op changes
 - In prosthesis height
 - Leg length
 - Soft tissue tension
 - In prosthesis anteversion
Summary

- Woodpecker pneumatic broach for preparation for CLP stem
 - Safe
 - Simple
 - Reliable
 - Reproducible

Thank-You!

Todd V. Swanson, MD
Desert Orthopaedic Center
Las Vegas, NV